中国移动通信集团福建有限公司福州分公司,福建福州350001
[ "林向阳 (1981—),男,高级工程师,现为中国移动通信集团福建有限公司福州分公司职员。研究方向:人工智能、计算机网络、数据库技术和信息安全。" ]
纸质出版日期:2023-12-31,
移动端阅览
林向阳. 人工智能引领未来:大语言模型在电力系统中的创新应用[J]. 新一代信息技术, 2023, 6(24): 29-34
LIN Xiang-yang. Artificial Intelligence Leads the Future: Innovative Applications of Big Language Modeling in Power Systems[J]. New Generation of Information Technology, 2023, 6(24): 29-34
林向阳. 人工智能引领未来:大语言模型在电力系统中的创新应用[J]. 新一代信息技术, 2023, 6(24): 29-34 DOI: 10.3969/j.issn.2096-6091.2023.24.006.
LIN Xiang-yang. Artificial Intelligence Leads the Future: Innovative Applications of Big Language Modeling in Power Systems[J]. New Generation of Information Technology, 2023, 6(24): 29-34 DOI: 10.3969/j.issn.2096-6091.2023.24.006.
本文研究了大语言模型及人工智能在电力系统中的应用。首先,介绍了大语言模型的基本原理和特点,包括其发展历程和应用领域。其次,探讨了人工智能技术在电力系统中的应用现状和前景。分析了大语言模型在电力系统中的三个关键应用领域:电力负荷预测、电力设备故障诊断和电力系统安全评估。在电力负荷预测方面,大语言模型通过学习历史数据和环境特征,可实现准确的负荷预测,为电力系统运行和调度提供有力支持;在电力设备故障诊断方面,大语言模型能够根据设备运行状态和故障特征,自动识别和定位故障,提高设备故障的诊断效率;在电力系统安全评估方面,大语言模型能够分析系统运行数据和风险因素,快速评估系统的安全状态,提供预警和决策支持。最后,讨论了大语言模型及人工智能在电力系统应用中面临的挑战及对策。我们认为,随着大语言模型的不断发展和人工智能技术的不断创新,电力系统的运行效率和安全性将得到显著提升。
In this paper
we study the application of big language modeling and artificial intelligence in power systems. First
we introduce the basic principles and characteristics of big language model
including its development history and application areas. Then
we discuss the current status and prospects of the application of artificial intelligence technology in power systems. We analyze three key application areas of big language models in power systems: power load forecasting
power equipment fault diagnosis
and power system security assessment. In power load forecasting
the big language model can realize accurate load forecasting by learning historical data and environmental features
providing powerful support for power system operation and scheduling. In power equipment fault diagnosis
the big language model can automatically identify and locate faults according to the operating state of the equipment and fault characteristics
improving the diagnostic efficiency of equipment faults. In power system security assessment
the Big Language Model can analyze system operation data and risk factors
quickly assess the security status of the system
and provide early warning and decision support. Finally
we discuss the challenges and countermeasures for the application of big language modeling and artificial intelligence in power systems. We believe that with the continuous development of big language modeling and the continuous innovation of AI technology
the operational efficiency and security of power systems will be significantly improved.
大语言模型人工智能电力系统
big language modelingartificial intelligencepower system
唐晓晟, 程琳雅, 张春红, 等. 大语言模型在学科知识图谱自动化构建上的应用[J]. 北京邮电大学学报(社会科学版), 2024, 26(1): 125-136.
彭大健, 裴玮, 肖浩, 等. 数据驱动的用户需求响应行为建模与应用[J]. 电网技术, 2021, 45(7): 2577-2586.
侍海将. 人工智能技术在电力设备运维检修中的应用[J]. 电子技术, 2023, 52(4): 352-353.
王力成, 王子非, 邓宝华, 等. 基于知识-数据混合驱动的综合能源系统多元负荷预测方法[J]. 高技术通讯, 2023, 33(8): 791-801.
耿国桐, 李晓松, 赵柯然. 数智赋能国防科技情报研究范式重构[J]. 国防科技, 2024, 45(1): 128-135.
靳东明, 金芝, 陈小红, 等. ChatModeler: 基于大语言模型的人机协作迭代式需求获取和建模方法[J]. 计算机研究与发展, 2024, 61(2): 338-350.
张冰馨. 大模型赋能企业招投标[J]. 企业家, 2024(3): 47-49.
于丰瑞. 网络威胁技战术情报自动化识别提取研究综述[J/OL]. 计算机工程与应用,(2024-02-28)[2024-04-12]. http://kns.cnki.net/kcms/detail/11.2127.tp.20240227.1705.002.htmlhttp://kns.cnki.net/kcms/detail/11.2127.tp.20240227.1705.002.html.
于硕, 王司宇, 王超, 等. 类ChatGPT大语言模型在电力系统中的应用前景[J]. 电气时代, 2023(10): 50-53.
邹鑫, 罗涓. 用梯度提升决策树实现电力负荷非线性影响因素分析[J]. 电力科学与工程, 2024, 40(3): 10-19.
孙文浩, 孟令杰, 马迎庆. 基于人工智能的电力输电工程故障定位与系统恢复技术研究[J]. 家电维修, 2024(4): 101-103.
虞于虹, 龚泽威一, 张海涛, 等. 基于Faster R-CNN算法的变电站设备识别与缺陷检测技术研究[J]. 电测与仪表, 2024, 61(3): 153-159.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构