浏览全部资源
扫码关注微信
1.牡丹江医科大学医学影像学院,黑龙江牡丹江157011
2.牡丹江医科大学附属红旗医院,黑龙江牡丹江157011
韩杨 (1990—),女,黑龙江人,硕士,讲师,研究方向:医学人工智能。
孙悦 (1992—),女,黑龙江人,初级职称,研究方向:人工智能。
郭金兴 (1984—),女,黑龙江人,中级职称,研究方向:人工智能。
陈广新 (1978—),男,黑龙江人,中级职称,研究方向:医学图像处理。
高铭泽(1988—),女,黑龙江人,博士,讲师,研究方向:人工智能。E-mail:44642581@qq.com
纸质出版日期:2023-11-30,
移动端阅览
韩杨, 孙悦, 郭金兴, 等. 基于GoogLeNet的乳腺癌超声图像分类[J]. 新一代信息技术, 2023, 6(22): 24-28
HAN Yang, SUN Yue, GUO Jin-xing, et al. Classification of Breast Cancer Ultrasound Images Based on GoogLeNet[J]. New Generation of Information Technology, 2023, 6(22): 24-28
韩杨, 孙悦, 郭金兴, 等. 基于GoogLeNet的乳腺癌超声图像分类[J]. 新一代信息技术, 2023, 6(22): 24-28 DOI: 10.3969/j.issn.2096-6091.2023.22.004.
HAN Yang, SUN Yue, GUO Jin-xing, et al. Classification of Breast Cancer Ultrasound Images Based on GoogLeNet[J]. New Generation of Information Technology, 2023, 6(22): 24-28 DOI: 10.3969/j.issn.2096-6091.2023.22.004.
本研究旨在开发一种基于深度学习的模型,用于对乳腺癌超声图像进行准确分类,以提升乳腺癌早期诊断的精确性。采用了GoogleNet深度学习模型,并在Kaggle提供的乳腺癌超声图像数据集上进行了训练和验证。通过调整模型参数和结构,实现了对良性、恶性和正常乳腺超声图像的有效区分。实验结果表明,所提出的深度学习模型在乳腺癌超声图像分类任务中展现出卓越的性能,具有高精确度、召回率和
F
1
分数。该模型有望成为辅助乳腺癌早期诊断的强有力工具,为临床医生提供更为精
确和可靠的诊断依据,从而对乳腺癌患者的治疗和预后产生积极影响。
This study aims to develop a deep learn-based model for the accurate classification of ultrasound images of breast cancer in order to improve the accuracy of early diagnosis of breast cancer. The GoogleNet deep learning model was used in this study
and was trained and verified on the breast cancer ultrasound image dataset provided by Kaggle. By adjusting the parameters and structure of the model
benign
malignant and normal breast ultrasound images were effectively distinguished.The experimental results show that the proposed deep learning model has excellent performance in breast cancer ultrasound image classification tasks
with high accuracy
recall rate and
F
1
scores. This model is expected to become a powerful tool to assist the early diagnosis of breast cancer
and provide clinicians with more accurate and reliable diagnostic basis
so as to have a positive impact on the treatment and prognosis of breast cancer patients.
乳腺癌深度学习GoogLeNet超声图像分类
breast cancerdeep learningGoogLeNetultrasonic
TRAYES K P, COKENAKES S E H. Breast cancer treatment[J]. American Family Physician, 2021, 104(2): 171-178.
BARZAMAN K, KARAMI J, ZAREI Z, et al. Breast cancer: Biology, biomarkers, and treatments[J]. International Immunopharmacology, 2020, 84: 106535.
CUTHRELL K M, TZENIOS N. Breast cancer: Updated and deep insights[J]. International Research Journal of Oncology, 2023, 6(1): 104-118.
ILESANMI A E, CHAUMRATTANAKUL U, MAKHANOV S S. Methods for the segmentation and classification of breast ultrasound images: A review[J]. Journal of Ultrasound, 2021, 24(4): 367-382.
李晓洁, 赵国家, 任金河. 双模态超声深度学习预测模型诊断乳腺癌的应用[J]. 中国临床研究, 2024, 10(3): 365-369, 374.
郭洪洋, 程前, 康晓东, 等. 多重注意力引导的超声乳腺癌肿瘤图像分割[J]. 计算机科学, 2024, 51(S1): 409-414.
刘心培, 查海玲, 平洁怡, 等. 超声监测定位腋窝淋巴结对乳腺癌患者新辅助治疗疗效的预测研究[J]. 南京医科大学学报(自然科学版), 2024, 44(6): 845-852.
井巧,胡园园,马宁飞,等.多模态超声技术在乳腺良恶性病灶诊断及乳腺癌新辅助化疗疗效评估中的应用[J].淮海医药,2023,41(4):346-351.
贺丽彤, 刘志强, 胡奇兰, 等. RSNA2023乳腺影像学[J]. 放射学实践, 2024, 39(3): 299-307.
MAQSOOD S, DAMAŠEVIČIUS R, MASKELIŪNAS R. TTCNN: A breast cancer detection and classification towards computer-aided diagnosis using digital mammography in early stages[J]. Applied Sciences, 2022, 12(7): 3273.
SIDDIQUI S Y, HAIDER A, GHAZAL T M, et al. IoMT cloud-based intelligent prediction of breast cancer stages empowered with deep learning[J]. IEEE Access, 2021, 9: 146478-146491.
RASOOL A, BUNTERNGCHIT C, LUO T J, et al. Improved machine learning-based predictive models for breast cancer diagnosis[J]. International Journal of Environmental Research and Public Health, 2022, 19(6): 3211.
ABBAS S, JALIL Z, JAVED A R, et al. BCD-WERT: A novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm[J]. PeerJ. Computer Science, 2021, 7: e390.
IBRAHIM A, MOHAMMED S, ALI H A, et al. Breast cancer segmentation from thermal images based on chaotic salp swarm algorithm[J]. IEEE Access, 2020, 8: 122121-122134.
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2015: 1-9.
0
浏览量
125
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构