浏览全部资源
扫码关注微信
对外经济贸易大学网络安全和信息化处,北京 100029
[ "柳丹彤 (1996—),女,硕士研究生,现任职于对外经济贸易大学。研究方向:数据挖掘、推荐系统和网络建设。E-mail: liudt@uibe.edu.cn" ]
[ "司艳波 (1997—),女,硕士研究生,现任职于对外经济贸易大学。研究方向:网络安全。" ]
纸质出版日期:2024-02-25
移动端阅览
柳丹彤, 司艳波. 基于跨域推荐的高校信息推送系统研究[J]. 新一代信息技术, 2024, 7(2): 13-17
LIU Dan-tong, SI Yan-bo. Research on Information Push System in Colleges and Universities Based on Cross-domain Recommendation[J]. New Generation of Information Technology, 2024, 7(2): 13-17
柳丹彤, 司艳波. 基于跨域推荐的高校信息推送系统研究[J]. 新一代信息技术, 2024, 7(2): 13-17 DOI: 10.3969/j.issn.2096-6091.2024.02.003.
LIU Dan-tong, SI Yan-bo. Research on Information Push System in Colleges and Universities Based on Cross-domain Recommendation[J]. New Generation of Information Technology, 2024, 7(2): 13-17 DOI: 10.3969/j.issn.2096-6091.2024.02.003.
高校师生接收的信息往往来自不同部门、不同管理系统,信息来源和传播渠道多样化,在数据爆炸的时代背景下,这使得师生及时获取自己所需信息变得更加困难。因此,本文提出基于跨域推荐的高校信息推送系统,通过建立跨域推荐模型,融合来自高校各部门及其管理的各系统的信息,利用师生与信息及资源的历史交互数据,发掘师生域内及跨域的需求、习惯和兴趣偏好,主动为师生提供全面、个性化的跨域信息推送服务,有效提升推荐效果。
The information received by faculty
staff and students in colleges and universities often comes from different departments and different management systems. The sources of information and the channels of information transmission are diversified. In the era of data explosion
it has become more difficult for faculty
staff and students to obtain the information they need in time. Therefore
an information push system in colleges and universities based on cross-domain recommendation is proposed. It establishes a cross-domain recommendation model that integrates information from various departments and their management systems within colleges and universities. Utilizing historical interaction data between faculty
staff
students
and various information and resources
the system aims to discover their intra-domain and cross-domain needs
habits
and interest preferences. It actively provides comprehensive and personalized cross-domain information push services for them
effectively enhancing the recommendation effect.
王旭 . 构建以用户为中心的高校图书馆学科情报推送服务体系: 以北京大学图书馆为例 [J ] . 中文科技期刊数据库(全文版)图书情报 , 2023 ( 2 ): 224 - 228 .
卢淑怡 , 李美子 , 许多 , 等 . 基于知识图谱的高校跨课程知识推送工具设计 [J ] . 软件导刊 , 2023 , 22 ( 1 ): 6 - 11 .
骆伟 , 殷宏涛 , 陶琛 . 基于协同过滤算法的高校社团推荐系统的设计与实现 [J ] . 软件工程 , 2022 , 25 ( 2 ): 42 - 45 .
赵思佳 , 尹婷 . 高校精准推送就业服务平台模型设计研究 [J ] . 中国新技术新产品 , 2023 ( 1 ): 39 - 42 .
方锦文 , 何晋乐 , 许潼歆 . 个性化高校信息推送方案研究 [J ] . 信息与电脑(理论版) , 2022 , 34 ( 7 ): 171 - 173 .
马娜 , 温廷新 , 贾旭 , 等 . 基于评分与文本融合的多注意力跨域推荐算法 [J ] . 辽宁工程技术大学学报(自然科学版) , 2024 , 43 ( 1 ): 101 - 110 .
易明 , 刘明 , 冯翠翠 . 融合异质信息网络表示学习的跨领域推荐研究 [J ] . 情报学报 , 2022 , 41 ( 4 ): 337 - 349 .
ZHAO C , LI C L , FU C . Cross-domain recommendation via preference propagation GraphNet [C ] // Proceedings of the 28th ACM International Conference on Information and Knowledge Management . New York : ACM , 2019 : 2165 - 2168 .
LIU M , LI J J , LI G H , et al . Cross domain recommendation via bi-directional transfer graph collaborative filtering networks [C ] // Proceedings of the 29th ACM International Conference on Information & Knowledge Management . New York : ACM , 2020 : 885 - 894 .
HU G , ZHANG Y , YANG Q . CoNet: Collaborative cross networks for cross-domain recommendation [C ] // Proceedings of the 27th ACM International Conference on Information and Knowledge Management . New York : ACM , 2018 : 667 - 676 .
YUAN F , YAO L N , BENATALLAH B . DARec: Deep domain adaptation for cross-domain recommendation via transferring rating patterns [C ] // Proceedings of the 28th International Joint Conference on Artificial Intelligence . California : International Joint Conferences on Artificial Intelligence Organization , 2019 : 4227 - 4233 .
LI P , TUZHILIN A . DDTCDR: Deep dual transfer cross domain recommendation [C ] // Proceedings of the 13th International Conference on Web Search and Data Mining . New York : ACM , 2020 : 331 - 339 .
CHEN X , ZHANG Y , TSANG I W , et al . Toward equivalent transformation of user preferences in cross domain recommendation [J ] . ACM Transactions on Information Systems , 2023 , 41 ( 1 ): 1 - 31 .
CAO J , LIN X , CONG X , et al . DisenCDR: Learning disentangled representations for cross-domain recommendation [C ] // Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval . New York : ACM , 2022 : 267 - 277 .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构