浏览全部资源
扫码关注微信
1.牡丹江医学院生命科学学院,黑龙江牡丹江 157011
2.牡丹江医学院医学影像学院,黑龙江牡丹江 157011
3.牡丹江医学院附属红旗医院,黑龙江牡丹江 157011
国威 (1998—),男,硕士研究生在读,研究方向:机器学习数据挖掘。
陈广新 (1978—),男,讲师,研究方向:机器学习数据挖掘。
于淼 (1998—),女,硕士研究生在读,研究方向:临床数据挖掘。
于广浩 (1980—),男,副教授,研究方向:临床数据挖掘。
郭金兴(1984—),女,中级职称。E-mail:vvvcgx@126.com
录用日期:2023-06-26,
纸质出版日期:2023-07-15
移动端阅览
国威, 陈广新, 于淼, 等. 预测COVID-19感染风险的医疗决策机器学习方法研究[J]. 新一代信息技术, 2023, 6(13): 12-17
GUO Wei, CHEN Guang-xin, YU Miao, et al. Research on Medical Decision Machine Learning Method for Predicting COVID-19 Infection Risk[J]. New Generation of Information Technology, 2023, 6(13): 12-17
国威, 陈广新, 于淼, 等. 预测COVID-19感染风险的医疗决策机器学习方法研究[J]. 新一代信息技术, 2023, 6(13): 12-17 DOI: 10.3969/j.issn.2096-6091.2023.13.003.
GUO Wei, CHEN Guang-xin, YU Miao, et al. Research on Medical Decision Machine Learning Method for Predicting COVID-19 Infection Risk[J]. New Generation of Information Technology, 2023, 6(13): 12-17 DOI: 10.3969/j.issn.2096-6091.2023.13.003.
开发一种机器学习模型,用于预测个体是否处于受COVID-19(COrona VIrus Disease 2019)影响的危险之中,并辅助医疗决策,包括就医或选择居家隔离。基于GradientBoost、XGBoost、随机森林3种集成学习算法以及决策树、逻辑回归、支持向量机、KNN算法4种非集成学习算法,构建COVID-19风险预测模型并验证模型效能,识别COVID-19风险因素。集成学习与非集成学习模型ROC曲线下面积大致都在0.94左右。同时识别出年龄、是否是住院患者、是否携带病毒、是否怀孕、是否患有肺炎、是否插氧等重要风险因素。结果表明,在大样本量下集成学习不一定会优于非集成学习方法。
To develop a machine learning model to predict whether an individual is at risk from COVID-19 (Corona Virus Disease 2019) and to aid medical decisions
including seeking medical attention or choosing home isolation. Based on three integrated learning algorithms
GradientBoost
XGBoost and Stochastic Forest
as well as four non-integrated learning algorithms including decision tree
logistic regression
support vector machine and KNN (K-Nearest Neighbor) algorithm were used to construct a COVID-19 risk prediction model. We validated the model efficiency
and identified the COVID-19 risk factors. The area under ROC (Receiver Operating Characteristic) curve of both integrated learning and non-integrated learning models was approximately 0.94. Important risk factors
such as age
hospitalization
infection
pregnancy
pneumonia
and oxygen insertion
were also identified. Integrated learning is not necessarily superior to non-integrated learning in large sample size.
HUANG C L , WANG Y M , LI X W , et al . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J ] . The Lancet , 2020 , 395 ( 10223 ): 497 - 506 .
CHAKRABORTY I , MAITY P . COVID-19 outbreak: Migration, effects on society, global environment and prevention [J ] . Science of the Total Environment , 2020 , 728 : 138882 .
MANIRUZZAMAN M , ISLAM M M , ALI M H , et al . COVID-19 diagnostic methods in developing countries [J ] . Environmental Science and Pollution Research , 2022 , 29 ( 34 ): 51384 - 51397 .
王岩 , 叶文 . 新冠疫情下我国医疗服务资源的供求曲线分析 [J ] . 现代医院 , 2020 , 20 ( 12 ): 1741 - 1745 .
江镕行 , 苏强 . 突发传染病期间的动态医疗资源配置: 以武汉新冠疫情为例 [J ] . 工业工程与管理 , 2023 , 28 ( 1 ): 181 - 192 .
王泳欣 , 张大斌 , 车大庆 , 等 . 面向不平衡数据集分类的LDBSMOTE过采样方法 [J ] . 统计与决策 , 2022 , 38 ( 18 ): 58 - 63 .
于玲 , 吴铁军 . 集成学习: Boosting算法综述 [J ] . 模式识别与人工智能 , 2004 , 17 ( 1 ): 52 - 59 .
ZHOU Z H , WU J X , TANG W . Ensembling neural networks: Many could be better than all [J ] . Artificial Intelligence , 2002 , 137 ( 1/2 ): 239 - 263 .
ZHAO X J , LU Y W , LI S , et al . Predicting renal function recovery and short-term reversibility among acute kidney injury patients in the ICU: Comparison of machine learning methods and conventional regression [J ] . Renal Failure , 2022 , 44 ( 1 ): 1327 - 1338 .
HELMY M , ELDAYDAMONY E , MEKKY N , et al . Predicting Parkinson disease related genes based on PyFeat and gradient boosted decision tree [J ] . Scientific Reports , 2022 , 12 : 10004 .
WANG D , LI J B , SUN Y , et al . A machine learning model for accurate prediction of sepsis in ICU patients in China [J ] . Frontiers in Public Health , 2021 , 9 : 1534 .
吴佩琪 , 杨雅俪 , 周妍璐 , 等 . 乳腺良恶性病变鉴别的MRI影像组学预测模型构建:基于随机森林、支持向量机、逻辑回归分类器 [J ] . 分子影像学杂志 , 2021 , 44 ( 5 ): 764 - 770 .
胡雪梅 , 谢英 , 蒋慧凤 . 基于惩罚逻辑回归的乳腺癌预测 [J ] . 数据采集与处理 , 2021 , 36 ( 6 ): 1237 - 1249 .
ZHOU X R , WANG H , XU C , et al . Application of kNN and SVM to predict the prognosis of advanced schistosomiasis [J ] . Parasitology Research , 2022 , 121 ( 8 ): 2457 - 2460 .
SEJUTI Z A , ISLAM M S . A hybrid CNN-KNN approach for identification of COVID-19 with 5-fold cross validation [J ] . Sensors International , 2023 , 4 : 100229 .
彭岩 , 马铃 , 张文静 , 等 . 基于集成学习的风险预测模型研究与应用 [J ] . 计算机工程与设计 , 2022 , 43 ( 4 ): 956 - 961 .
车宏鑫 , 王桐 , 王伟 . 前列腺癌预测模型对比研究 [J ] . 数据分析与知识发现 , 2021 , 5 ( 9 ): 107 - 114 .
0
浏览量
244
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构