浏览全部资源
扫码关注微信
1.牡丹江医学院,黑龙江牡丹江 157011
2.牡丹江医学院附属红旗医院,黑龙江牡丹江 157011
刘艺 (1983―),女,实验师,研究方向:药学。
孙延斌 (1975―),男,副教授,研究方向:医学人工智能。
翟凤国 (1974―),女,教授,研究方向:药理学。
梁新(1982―),女,主管护师,研究方向:护理学。E-mail: 44642581@qq.com。
录用日期:2023-06-26,
纸质出版日期:2023-06-30
移动端阅览
刘艺, 孙延斌, 翟凤国, 等. 基于迁移学习的DenseNet模型在植物叶片病虫害分类研究[J]. 新一代信息技术, 2023, 6(12): 24-30
LIU Yi, SUN Yan-bin, ZHAI Feng-guo, et al. DenseNet Model Based on Transfer Learning in Plant Leaf Pest Classification[J]. New Generation of Information Technology, 2023, 6(12): 24-30
刘艺, 孙延斌, 翟凤国, 等. 基于迁移学习的DenseNet模型在植物叶片病虫害分类研究[J]. 新一代信息技术, 2023, 6(12): 24-30 DOI: 10.3969/j.issn.2096-6091.2023.12.005.
LIU Yi, SUN Yan-bin, ZHAI Feng-guo, et al. DenseNet Model Based on Transfer Learning in Plant Leaf Pest Classification[J]. New Generation of Information Technology, 2023, 6(12): 24-30 DOI: 10.3969/j.issn.2096-6091.2023.12.005.
病虫害的发生会对农作物的品质和产量产生不利影响,因此进行病害诊断和识别对提升农作物生产质量和经济效益至关重要。本研究旨在开发一种基于迁移学习的DenseNet模型,实现多种植物病虫害的高效、准确识别。以预训练模型作为基础模型,构建了一个新的模型,并对其进行了两轮训练。最终,实现了96%的识别准确率,成功分类了几种植物叶片病虫害。这项研究为植物病害诊断和识别任务提供了有价值的参考。
The occurrence of pests and diseases has a negative impact on the quality and yield of crops
so the diagnosis and identification of diseases is very important to improve the quality and economic benefits of crop production. The aim of this study is to develop a DenseNet model based on transfer learning to realize efficient and accurate identification of various plant diseases and pests. By using the pre-training model as the basic model
a new model was constructed and two rounds of training were conducted on it. Finally
the recognition accuracy of 96% was achieved
and several plant leaf diseases and insect pests were successfully classified. This study provides a valuable reference for plant disease diagnosis and identification tasks.
SALEEM , POTGIETER , ARIF M . Plant disease detection and classification by deep learning [J ] . Plants , 2019 , 8 ( 11 ): 468 .
于明 , 李若曦 , 阎刚 , 等 . 基于颜色掩膜网络和自注意力机制的叶片病害识别方法 [J ] . 农业机械学报 , 2022 , 53 ( 8 ): 337 - 344 .
杨奉水 , 王志博 , 汪为通 , 等 . 人工智能识别茶树病虫害的应用与展望 [J ] . 中国茶叶 , 2022 , 44 ( 6 ): 1 - 6 .
XU L X , CAO B X , NING S Y , et al . Peanut leaf disease identification with deep learning algorithms [J ] . Molecular Breeding , 2023 , 43 ( 4 ): 1 - 12 .
苏仕芳 , 乔焰 , 饶元 . 基于迁移学习的葡萄叶片病害识别及移动端应用 [J ] . 农业工程学报 , 2021 , 37 ( 10 ): 127 - 134 .
王佳 . 计算机视觉在香芋病害检测中的应用研究 [J ] . 农机化研究 , 2020 , 42 ( 8 ): 241 - 244 .
谭丽娟 . 基于机器学习的番茄、生菜病害识别研究 [D ] . 成都 : 西华大学 , 2022 .
SINGH S P , WANG L P , GUPTA S , et al . 3D deep learning on medical images: A review [J ] . Sensors , 2020 , 20 ( 18 ): 5097 .
CHLAP P , MIN H , VANDENBERG N , et al . A review of medical image data augmentation techniques for deep learning applications [J ] . Journal of Medical Imaging and Radiation Oncology , 2021 , 65 ( 5 ): 545 - 563 .
范若菲 , 李时东 , 李时元 . 基于改进YOLOv5的日本落叶松虫害检测技术 [J ] . 林业工程学报 , 2023 , 8 ( 3 ): 165 - 172 .
BOUGUETTAYA A , ZARZOUR H , KECHIDA A , et al . Deep learning techniques to classify agricultural crops through UAV imagery: A review [J ] . Neural Computing and Applications , 2022 , 34 ( 12 ): 9511 - 9536 .
ZHU Y , NEWSAM S . DenseNet for dense flow [C ] // 2017 IEEE International Conference on Image Processing (ICIP) . Piscataway : IEEE , 2017 : 790 - 794 .
ZHANG K , GUO Y R , WANG X S , et al . Multiple feature reweight DenseNet for image classification [J ] . IEEE Access , 2019 , 7 : 9872 - 9880 .
VULLI A , SRINIVASU P N , SASHANK M S K , et al . Fine-tuned DenseNet-169 for breast cancer metastasis prediction using FastAI and 1-cycle policy [J ] . Sensors , 2022 , 22 ( 8 ): 2988 .
赵小强 , 宋昭漾 . Adam优化的CNN超分辨率重建 [J ] . 计算机科学与探索 , 2019 , 13 ( 5 ): 858 - 865 .
NAJAVITS L M . The problem of dropout from "gold standard" PTSD therapies [J ] . F 1000 Prime Reports , 2015 , 7 : 43 .
0
浏览量
171
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构