浏览全部资源
扫码关注微信
上海理工大学健康科学与工程学院,上海 200093
[ "陈兆学 (1975—),男,博士研究生,副教授,硕士导师,研究方向:生物医学信号处理。" ]
纸质出版日期:2023-06-15
移动端阅览
陈兆学, 丁佳语, 卢永禄. 关于“数字信号处理”课程“围线积分法”求z反变换思政教学的研究和探索[J]. 新一代信息技术, 2023, 6(11): 42-45
CHEN Zhao-xue, DING Jia-yu, LU Yong-lu. Research and Exploration of Curriculum Ideology and Politics Teaching of “Digital Signal Processing” on the Contour Integral Method for Inverse z-Transforming[J]. New Generation of Information Technology, 2023, 6(11): 42-45
陈兆学, 丁佳语, 卢永禄. 关于“数字信号处理”课程“围线积分法”求z反变换思政教学的研究和探索[J]. 新一代信息技术, 2023, 6(11): 42-45 DOI: 10.3969/j.issn.2096-6091.2023.11.009.
CHEN Zhao-xue, DING Jia-yu, LU Yong-lu. Research and Exploration of Curriculum Ideology and Politics Teaching of “Digital Signal Processing” on the Contour Integral Method for Inverse z-Transforming[J]. New Generation of Information Technology, 2023, 6(11): 42-45 DOI: 10.3969/j.issn.2096-6091.2023.11.009.
“数字信号处理”类课程思政教学实施起来难度较大且富有挑战性,本文对在“围线积分法”求
z
反变换教学过程中如何有效融入思政元素进行了研究和探索。论文首先从中算学著名的贾宪三角形及其所隐含的斐波那契序列相关的代数学规律出发,介绍了该序列通项计算表达式的具体特点。然后,基于数字信号处理课程教学中
z
反变换求取的“围线积分法”法,以例题形式分析了跟斐波那契序列通项公式求取相关的
z
变换表达式及收敛域的对应关系。在教学中,以例题讲解的形式可巧妙地把相关思政元素融入进去。经过3个学期的教学实践和反馈表明,如此进行思政教学,既可增强“围线积分法”求
z
反变换教学的趣味性,又可提高学生的学习兴趣和动力,具有良好的教学成效,值得在计算机学科相关教学过程中予以参考和借鉴。
Ideological and political curriculum teaching of digital Signal processing is difficult and challenging to implement. This paper studies and explores how to effectively integrate ideological and political elements in the teaching process of inverse
z
-transformation by the contour integral method. First of all
from the famous Jia Xian triangle and connotative Fibonacci sequence as well as related algebraic laws
the paper introduces the specific characteristics of the general term calculation expression of the sequence.Then
based on the contour integral method for obtaining the inverse
z
-transform in the teaching of digital signal processing
the corresponding relationship between the
z
-transform expression and the convergence domain related to obtaining the general term formula of Fibonacci sequence is analyzed in the form of an example.In curriculum teaching
relevant ideological and political elements can be skillfully integrated in the form of example explanat
ion. After three semesters of teaching practice and feedback
it is shown that such ideological and political teaching can not only enhance the interest of the teaching of the contour integral method for
z
-inverse transformation
but also improve the students' learning interest and motivation. It has good teaching results and is worth reference in the relevant curriculum teaching process of computer science.
吴文俊 . 数学机械化 [M ] . 北京 : 科学出版社 , 2003 .
肖青然 . “杨辉三角”应为“贾宪三角” [J ] . 职业技术教育 , 1995 , 16 ( 5 ): 37 - 37 .
李兆华 , 程贞一 . 朱世杰招差术探原 [J ] . 自然科学史研究 , 2000 , 19 ( 1 ): 30 - 39 .
郭德才 . 不可思议的斐波纳契数列 [J ] . 科学24小时 , 2008 , ( 6 ): 16 - 17 .
晁丰成 . 由斐波那契数列的通项公式说起 [J ] . 中国数学教育:高中版 , 2018 , ( 24 ): 46 - 48 .
冯云霞 . 浅谈斐波纳契数列与黄金数的关系 [J ] . 数理化解题研究 , 2019 , ( 6 ): 27 - 28 .
劳会学 . Fibonacci数列通项公式的四个直接证明 [J ] . 数学的实践与认识 , 2007 , 37 ( 15 ): 180 - 182 .
何郁波 . 斐波那契数列通项公式的几种新求法 [J ] . 吉首大学学报(自然科学版) , 2018 , 39 ( 1 ): 7 - 9 .
黄昭星 . 利用矩阵法求斐波那契数列通项 [J ] . 新一代: 理论版 , 2018 , ( 14 ): 1 .
程佩青 . 数字信号处理教程 . 第2版 [M ] . 北京 : 清华大学出版社 , 2001 .
0
浏览量
36
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构